
General announcements



Momentum and Energy
• We know momentum is conserved in collisions as long as there are 

no external impulses or the external forces being applied over the 
time interval of the collision are deemed small (the force a wall 
would apply to a ball as the ball hit the wall wouldn’t qualify).

• What about energy? 
– In most cases, potential energy changes during collisions are negligible 

because the change in position of the pieces through the collision are 
miniscule.

– In most collisions, at least one object is moving before the collision, so there 
is some amount of kinetic energy. (An “explosion” is a reverse collision, and 
the objects begin with zero KE)

– During the collision, energy is usually transferred into other forms.
• Sound energy, internal energy (remember, internal energy is related to temp…), 

and work to deform the objects (e.g. car crash)

• Collision types are:



Inelastic collisions (momentum conserved extra info needed for KE)
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Perfectly Inelastic collisions (momentum conserved with bodies 
becoming one and final velocities same)
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Elastic collisions (both KE and momentum conserved)
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(Mythical in the sense that you have to be told to assume this is true.)

(THIS IS THE NORM where energy is not conserved but momentum is.)

(A normal, inelastic collision in which the TWO BODIES STICK TOGETHER.)



Collision example – problem 6.25
• An astronaut in her space suit has a total mass of 87.0 kg, 

including suit and oxygen tank. Her tether line loses its 
attachment to her spacecraft while she's on a spacewalk. 
Initially at rest with respect to her spacecraft, she throws her 
12.0-kg oxygen tank away from her spacecraft with a speed of 
8.00 m/s to propel herself back toward it.  (Alternative: the ice 
pond problem.)

– (a) Determine the maximum distance she can be from the craft and still 
return within 2.00 min (the amount of time the air in her helmet 
remains breathable).

– (b) Explain in terms of Newton's laws of motion why this strategy 
works.



Problem 6.25 (cont’d.)
• (a) Determine max distance in order to return in 2 min.  

The total momentum in the system to start with is zero, so that has to be the net, 
total momentum of the system throughout time (there are no external impulses 
acting to change the total momentum).  As such, we can write:

Traveling at 1.28 m/s for 120 seconds (2 minutes) means she can travel a 
distance of:



(b) Explain using Newton’s Laws
She applies a force to the tank that accelerates it to the right while it applies an 
equal and opposite force on her that accelerates her to the left.  The forces are 
the same, but as the masses are different, the accelerations will be different and 
will be governed by F=ma.

You’ve (probably) seen something like this in a movie…



Speaking of space and astronauts…
• Three astronauts are hanging out in space and are bored out of their minds. They 

decide to play a game of “catch.” Astronaut 1, who is right next to Astronaut 2, 
grabs 2 and shoves him with velocity v towards Astronaut 3, who is a little distance 
away. Astronaut 3 catches 2, and then she shoves him back towards Astronaut 1. 
Assuming all three have roughly the same mass and the same pushing strength, how 
many “throws” will there be in the game?
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Spring-gun explosion
• A spring-gun of mass mg = 2 kg uses an ideal spring with k = 120 N/m to shoot a 

ball of mass mb = 0.04 kg out of its barrel. At a particular moment in time, the 
cocked gun and ball are moving backwards over a frictionless table with velocity v0
= 5 m/s (the word backwards means when the gun is fired the bullet will move in 
the opposite direction of the gun’s motion). Relative to the table, what will the 
gun’s velocity (vg) and the ball’s velocity (vb) be just after firing? Assume the spring 
is compressed a distance x = 0.15 m when the gun is cocked.

0.15 m

x = 0

v0 = 5 m/s Where is energy conserved?

Where is energy not conserved?

Where is momentum conserved?

Where is momentum not conserved?



Spring-gun explosion
We know momentum is conserved before and after the “explosion.” So we can write:
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We can also use Conservation of Energy through the firing, because the spring is ideal:
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Spring-gun explosion
Substituting the expression for vg into the energy equation yields:
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Plugging in numbers yields the following (after some algebra):

0 = 0.0204𝑣%) − 0.204𝑣% − 0.84

Quadratic formula yields two answers: vb = 13.13 m/s or -3.13 m/s.

Which one is it? 

First, we know the bullet has to go opposite the direction the gun was going before. 
Because we made v0 +5m/s in the momentum equation, vb must be negative.

Second, if we plug both options into the expression for vg, we get 4.8 m/s or 5.16 m/s 
respectively. The gun must be going faster in its original direction after the explosion 
(Think about it) so the bullet vb = -3.13 m/s (- meaning opposite direction from the gun) 
and gun vg = 5.16 m/s.
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41.)

Take the extended ice dome problem
and make it into a Jack and Jill event 
with Jill shoved up against a spring 
(not shown) to start with and Jill 
crashing into Jack at the crest of the 
hill.  Now you need to work in 
sections, keeping in mind where 
energy and where momentum are 
conserved (and where they aren’t!). 
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The next page animates this segregating:

Jill and 
Jack collide two leave 
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before collision, 
energy conserved
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There is the problem from hell with the first mass running into a 
second mass in a perfectly inelastic collision.  

43.)

m1 = 2kg

L = 2 m

µk = .3 jello

x = .5 m

 jetpack
   burn
F = 500 N

k = 120 N/m

loses 80J loses 110J

frictional surface

Rc = 12 m
Rh = 1.2 m

m2 = 5kg

In that case, you’d have to use energy up until the collision, then momentum to 
connect the before collision and after collision velocities, then go from there 
with energy considerations.



Classic explosion problem (6.60)
A nucleus decays ejecting three particles.  Two have known velocity and direction.  The 
third has unknown velocity and direction.  Determine the unknown quantities.

See solution on class Website.



Let’s assume the entire mass is moving with an 
initial velocity of                          in the x-direction.  
If body 3’s angle is            , what is the final 
velocity of body 1 and 3?

vo = 6x105  m/s

in x-direction:
                      p∑ o,x

          + Fext,xΔt∑ =                                    pf,x∑
                        mv             +        0      =                  m2v2                 −             m3v3 sinθ
    17x10−27 kg( ) 6x105  m/s( )+       0      = 8.4x10−27 kg( ) 4x106  m/s( )− 3.6x10−27 kg( )v3 sin 30o

              ⇒         v3 = 1.3x107  m/s    (where this is the magnitude of 3's velocity)

θ = 30o

How about a little different angle:

in y-direction:
       p∑ o,y

+ Fext,yΔt∑ =                           pf,y∑
           0     +       0      =        m1v1           −                      m3v3coθ
                                  0 = 5.0x10−27 kg( )v1 − 3.6x10−27 kg( ) 1.3x107  m/s( )cos30o

           ⇒    v1 = 9.36x106  m/s    (where this is the magnitude of 1's velocity)


